
Distributed coloring of graphs
with an optimal number of colors

E. Bamas and L. Esperet

EPFL, Lausanne
Université Grenoble Alpes, France

STACS 2019
Berlin, March 15th, 2019



Distributed algorithms

The LOCAL model:

Graph of size n, every vertex is given a unique ID between 1 and n

Every vertex can send messages of unlimited size to its neighbors in the graph

Synchronous rounds

No failure

Infinite local computational power

Any problem is solvable in O(n) rounds !

Distributed coloring, why do we care ?

Coloring is a very powerful tool to
adapt sequential algorithms to
distributed model

Nice question as many sequential
coloring algorithms are challenging
to adapt



Distributed algorithms

The LOCAL model:

Graph of size n, every vertex is given a unique ID between 1 and n

Every vertex can send messages of unlimited size to its neighbors in the graph

Synchronous rounds

No failure

Infinite local computational power

Any problem is solvable in O(n) rounds !

Distributed coloring, why do we care ?

Coloring is a very powerful tool to
adapt sequential algorithms to
distributed model

Nice question as many sequential
coloring algorithms are challenging
to adapt



Coloring graphs of maximum degree ∆

The greedy algorithm shows that every graph of maximum degree ∆ can be
efficiently colored with ∆ + 1 colors.

Every connected graph of maximum degree ∆, other than cliques and odd
cycles, can be ∆-colored efficiently.

Theorem (Brooks)

(it follows that deciding whether χ(G ) ≤ ∆ is in P, and if the answer is yes,
obtaining the coloring is also in P).

Question: can we go further?

No for ∆ = 4



Coloring graphs of maximum degree ∆

The greedy algorithm shows that every graph of maximum degree ∆ can be
efficiently colored with ∆ + 1 colors.

Every connected graph of maximum degree ∆, other than cliques and odd
cycles, can be ∆-colored efficiently.

Theorem (Brooks)

(it follows that deciding whether χ(G ) ≤ ∆ is in P, and if the answer is yes,
obtaining the coloring is also in P).

Question: can we go further?

No for ∆ = 4



Coloring graphs of maximum degree ∆

The greedy algorithm shows that every graph of maximum degree ∆ can be
efficiently colored with ∆ + 1 colors.

Every connected graph of maximum degree ∆, other than cliques and odd
cycles, can be ∆-colored efficiently.

Theorem (Brooks)

(it follows that deciding whether χ(G ) ≤ ∆ is in P, and if the answer is yes,
obtaining the coloring is also in P).

Question: can we go further?

No for ∆ = 4



Coloring graphs of maximum degree ∆

The greedy algorithm shows that every graph of maximum degree ∆ can be
efficiently colored with ∆ + 1 colors.

Every connected graph of maximum degree ∆, other than cliques and odd
cycles, can be ∆-colored efficiently.

Theorem (Brooks)

(it follows that deciding whether χ(G ) ≤ ∆ is in P, and if the answer is yes,
obtaining the coloring is also in P).

Question: can we go further?

No for ∆ = 4



Coloring graphs of maximum degree ∆

The greedy algorithm shows that every graph of maximum degree ∆ can be
efficiently colored with ∆ + 1 colors.

Every connected graph of maximum degree ∆, other than cliques and odd
cycles, can be ∆-colored efficiently.

Theorem (Brooks)

(it follows that deciding whether χ(G ) ≤ ∆ is in P, and if the answer is yes,
obtaining the coloring is also in P).

Question: can we go further?

No for ∆ = 4



Coloring graphs of maximum degree ∆

For any ∆, let k∆ be the maximum integer k such that (k + 1)(k + 2) ≤ ∆. It
can be checked that

√
∆− 3 < k∆ <

√
∆− 1.

For 3 ≤ c ≤ ∆ − k∆ − 1, we cannot test for c-colorability of graphs with
maximum degree ∆ in polynomial time unless P = NP.

Theorem (Embden-Weinert, Hougardy, Kreuter 1998)

For sufficiently large (but constant) ∆, and every c ≥ ∆− k∆, there is a linear
time deterministic algorithm to test whether graphs of maximum degree ∆ are
c-colorable. Furthermore, there is a polynomial time deterministic algorithm
that will produce a c-coloring whenever one exists.

Theorem (Molloy Reed 2001–2014)



Coloring graphs of maximum degree ∆

For any ∆, let k∆ be the maximum integer k such that (k + 1)(k + 2) ≤ ∆. It
can be checked that

√
∆− 3 < k∆ <

√
∆− 1.

For 3 ≤ c ≤ ∆ − k∆ − 1, we cannot test for c-colorability of graphs with
maximum degree ∆ in polynomial time unless P = NP.

Theorem (Embden-Weinert, Hougardy, Kreuter 1998)

For sufficiently large (but constant) ∆, and every c ≥ ∆− k∆, there is a linear
time deterministic algorithm to test whether graphs of maximum degree ∆ are
c-colorable. Furthermore, there is a polynomial time deterministic algorithm
that will produce a c-coloring whenever one exists.

Theorem (Molloy Reed 2001–2014)



Coloring graphs of maximum degree ∆

For any ∆, let k∆ be the maximum integer k such that (k + 1)(k + 2) ≤ ∆. It
can be checked that

√
∆− 3 < k∆ <

√
∆− 1.

For 3 ≤ c ≤ ∆ − k∆ − 1, we cannot test for c-colorability of graphs with
maximum degree ∆ in polynomial time unless P = NP.

Theorem (Embden-Weinert, Hougardy, Kreuter 1998)

For sufficiently large (but constant) ∆, and every c ≥ ∆− k∆, there is a linear
time deterministic algorithm to test whether graphs of maximum degree ∆ are
c-colorable. Furthermore, there is a polynomial time deterministic algorithm
that will produce a c-coloring whenever one exists.

Theorem (Molloy Reed 2001–2014)



Distributed coloring

When ∆ = O(1), graphs of maximum degree ∆ can be colored with ∆ + 1 colors
in O(log∗ n) rounds (SIAM J. Discrete Math. 1988, SIAM Journal on Computing
1992), and the round complexity is best possible already for paths.

In general, (∆ + 1)-coloring is a very active field of research with the current
state-of-the art running times: O(

√
∆ log ∆ log∗∆ + log∗ n) deterministic

complexity (FOCS 2016 + PODC 2018) and O(
√

log ∆) + 2O(
√

log log n)

randomized complexity (STOC 2016 + STOC 2018).

The ∆-coloring problem (Brooks Theorem) can be solved in

O(log ∆) + 2O(
√

log log n) rounds w.h.p. when ∆ ≥ 4, or O((log log n)2) rounds
w.h.p. when ∆ ≥ 3 is a constant (PODC 2018).



Distributed coloring

When ∆ = O(1), graphs of maximum degree ∆ can be colored with ∆ + 1 colors
in O(log∗ n) rounds (SIAM J. Discrete Math. 1988, SIAM Journal on Computing
1992), and the round complexity is best possible already for paths.

In general, (∆ + 1)-coloring is a very active field of research with the current
state-of-the art running times: O(

√
∆ log ∆ log∗∆ + log∗ n) deterministic

complexity (FOCS 2016 + PODC 2018) and O(
√

log ∆) + 2O(
√

log log n)

randomized complexity (STOC 2016 + STOC 2018).

The ∆-coloring problem (Brooks Theorem) can be solved in

O(log ∆) + 2O(
√

log log n) rounds w.h.p. when ∆ ≥ 4, or O((log log n)2) rounds
w.h.p. when ∆ ≥ 3 is a constant (PODC 2018).



Distributed coloring

When ∆ = O(1), graphs of maximum degree ∆ can be colored with ∆ + 1 colors
in O(log∗ n) rounds (SIAM J. Discrete Math. 1988, SIAM Journal on Computing
1992), and the round complexity is best possible already for paths.

In general, (∆ + 1)-coloring is a very active field of research with the current
state-of-the art running times: O(

√
∆ log ∆ log∗∆ + log∗ n) deterministic

complexity (FOCS 2016 + PODC 2018) and O(
√

log ∆) + 2O(
√

log log n)

randomized complexity (STOC 2016 + STOC 2018).

The ∆-coloring problem (Brooks Theorem) can be solved in

O(log ∆) + 2O(
√

log log n) rounds w.h.p. when ∆ ≥ 4, or O((log log n)2) rounds
w.h.p. when ∆ ≥ 3 is a constant (PODC 2018).



Our results

Recall that k∆ ≈
√

∆− 2.

When c ≤ ∆−k∆, there exist arbitrarily large graphs G of maximum degree ∆
for which χ(G ) = c , and such that any distributed algorithm coloring G with
c colors takes Ω(n/∆) rounds.

Theorem (B. and Esperet 2018)

For sufficiently large ∆, there is a distributed randomized algorithm run-
ning w.h.p. in min{O(log1/12(∆) log n), 2O(log ∆+

√
log log n)} rounds, that takes a

graph G with maximum degree ∆ in input, and outputs, for any c ≥ ∆−k∆ +1,
either a certificate that G is not c-colorable, or a c-coloring of G .

Theorem (B. and Esperet 2018)



Our results

Recall that k∆ ≈
√

∆− 2.

When c ≤ ∆−k∆, there exist arbitrarily large graphs G of maximum degree ∆
for which χ(G ) = c , and such that any distributed algorithm coloring G with
c colors takes Ω(n/∆) rounds.

Theorem (B. and Esperet 2018)

For sufficiently large ∆, there is a distributed randomized algorithm run-
ning w.h.p. in min{O(log1/12(∆) log n), 2O(log ∆+

√
log log n)} rounds, that takes a

graph G with maximum degree ∆ in input, and outputs, for any c ≥ ∆−k∆ +1,
either a certificate that G is not c-colorable, or a c-coloring of G .

Theorem (B. and Esperet 2018)



Graphs that are hard to color optimally

Recall that k∆ is the greatest integer such that (k∆ + 1)(k∆ + 2) ≤ ∆ (hence
k∆ ≈

√
∆− 2) and c ≤ ∆− k∆

G G′

S

C

v

Set G to be a clique of size c + 1 and take out a vertex v .

Set C to be a clique of size c − 1 and S a stable set of size ∆− c + 2. We can
ensure the maximum degree is still ∆ because (∆− c + 1)(∆− c + 2) ≥ ∆.



Graphs that are hard to color optimally

Recall that k∆ is the greatest integer such that (k∆ + 1)(k∆ + 2) ≤ ∆ (hence
k∆ ≈

√
∆− 2) and c ≤ ∆− k∆

G G′

S

C

v

Set G to be a clique of size c + 1 and take out a vertex v .

Set C to be a clique of size c − 1 and S a stable set of size ∆− c + 2. We can
ensure the maximum degree is still ∆ because (∆− c + 1)(∆− c + 2) ≥ ∆.



Graphs that are hard to color optimally

Recall that k∆ is the greatest integer such that (k∆ + 1)(k∆ + 2) ≤ ∆ (hence
k∆ ≈

√
∆− 2) and c ≤ ∆− k∆

G G′

S

C

v

Set G to be a clique of size c + 1 and take out a vertex v .

Set C to be a clique of size c − 1 and S a stable set of size ∆− c + 2. We can
ensure the maximum degree is still ∆ because (∆− c + 1)(∆− c + 2) ≥ ∆.



Graphs that are hard to color optimally

Recall that k∆ is the greatest integer such that (k∆ + 1)(k∆ + 2) ≤ ∆ (hence
k∆ ≈

√
∆− 2) and c ≤ ∆− k∆

G G′

S

C

v

Set G to be a clique of size c + 1 and take out a vertex v .

Set C to be a clique of size c − 1 and S a stable set of size ∆− c + 2. We can
ensure the maximum degree is still ∆ because (∆− c + 1)(∆− c + 2) ≥ ∆.



Graphs that are hard to color optimally

Ci−1 − vi−1

C1 − v1 CiC2 − v2

S2 Si−1 Si

diameter ≥ n
2∆

When c ≤ ∆−k∆, there exist arbitrarily large graphs G of maximum degree ∆
for which χ(G ) = c , and such that any distributed algorithm coloring G with
c colors takes Ω(n/∆) rounds.

Theorem (B. and Esperet 2018)



Graphs that are hard to color optimally

Ci−1 − vi−1

C1 − v1 CiC2 − v2

S2 Si−1 Si

diameter ≥ n
2∆

When c ≤ ∆−k∆, there exist arbitrarily large graphs G of maximum degree ∆
for which χ(G ) = c , and such that any distributed algorithm coloring G with
c colors takes Ω(n/∆) rounds.

Theorem (B. and Esperet 2018)



Overview of the proof

We call a vertex dense if its neighborhood has more than
(

∆
2

)
−∆3/2 edges. A

vertex v that is not dense is said to be sparse.

We say that S ,X1,X2, . . . ,Xt is a dense decomposition of G if:

1 S ,X1,X2, . . . ,Xt partition V .

2 every Xi has between ∆− 8∆1/2 and ∆ + 4∆1/2 vertices.

3 There are at most 8∆3/2 edges between Xi and V − Xi .

4 a vertex is adjacent to at least 3∆
4 vertices of Xi if and only if it is in Xi .

5 Every vertex in S is sparse.

Such a decomposition can be computed in a constant number of rounds.



Overview of the proof

We call a vertex dense if its neighborhood has more than
(

∆
2

)
−∆3/2 edges. A

vertex v that is not dense is said to be sparse.

We say that S ,X1,X2, . . . ,Xt is a dense decomposition of G if:

1 S ,X1,X2, . . . ,Xt partition V .

2 every Xi has between ∆− 8∆1/2 and ∆ + 4∆1/2 vertices.

3 There are at most 8∆3/2 edges between Xi and V − Xi .

4 a vertex is adjacent to at least 3∆
4 vertices of Xi if and only if it is in Xi .

5 Every vertex in S is sparse.

Such a decomposition can be computed in a constant number of rounds.



Overview of the proof

We call a vertex dense if its neighborhood has more than
(

∆
2

)
−∆3/2 edges. A

vertex v that is not dense is said to be sparse.

We say that S ,X1,X2, . . . ,Xt is a dense decomposition of G if:

1 S ,X1,X2, . . . ,Xt partition V .

2 every Xi has between ∆− 8∆1/2 and ∆ + 4∆1/2 vertices.

3 There are at most 8∆3/2 edges between Xi and V − Xi .

4 a vertex is adjacent to at least 3∆
4 vertices of Xi if and only if it is in Xi .

5 Every vertex in S is sparse.

Such a decomposition can be computed in a constant number of rounds.



The Distributed Lovász Local Lemma
Consider a set X of independent random variables, and a set B = B1, . . . ,Bn of
(typically bad) events, each depending on a subset of the variables from X .

Consider the graph H with vertex-set B, with an edge between two events if the
set of variables they depend on intersect. The graph H is called the event
dependency graph.
Let d ≥ 2 be the maximum degree of H, and let p be the maximum probability of
an event from B.

If epd2 < 1, then there is a distributed randomized algorithm, running in H
w.h.p. in O(log n) rounds, that finds a value assignment to the variables of X
such that no event from B holds.

Theorem (Chung, Pettie, Su 2014)

If 215pd8 < 1, then there is a distributed randomized algorithm, running in H
w.h.p. in 2O(log d+

√
log log n) rounds, that finds a value assignment to the variables

of X such that no event from B holds.

Theorem (Ghaffari, Harris, Kuhn 2017)



The Distributed Lovász Local Lemma
Consider a set X of independent random variables, and a set B = B1, . . . ,Bn of
(typically bad) events, each depending on a subset of the variables from X .
Consider the graph H with vertex-set B, with an edge between two events if the
set of variables they depend on intersect. The graph H is called the event
dependency graph.

Let d ≥ 2 be the maximum degree of H, and let p be the maximum probability of
an event from B.

If epd2 < 1, then there is a distributed randomized algorithm, running in H
w.h.p. in O(log n) rounds, that finds a value assignment to the variables of X
such that no event from B holds.

Theorem (Chung, Pettie, Su 2014)

If 215pd8 < 1, then there is a distributed randomized algorithm, running in H
w.h.p. in 2O(log d+

√
log log n) rounds, that finds a value assignment to the variables

of X such that no event from B holds.

Theorem (Ghaffari, Harris, Kuhn 2017)



The Distributed Lovász Local Lemma
Consider a set X of independent random variables, and a set B = B1, . . . ,Bn of
(typically bad) events, each depending on a subset of the variables from X .
Consider the graph H with vertex-set B, with an edge between two events if the
set of variables they depend on intersect. The graph H is called the event
dependency graph.
Let d ≥ 2 be the maximum degree of H, and let p be the maximum probability of
an event from B.

If epd2 < 1, then there is a distributed randomized algorithm, running in H
w.h.p. in O(log n) rounds, that finds a value assignment to the variables of X
such that no event from B holds.

Theorem (Chung, Pettie, Su 2014)

If 215pd8 < 1, then there is a distributed randomized algorithm, running in H
w.h.p. in 2O(log d+

√
log log n) rounds, that finds a value assignment to the variables

of X such that no event from B holds.

Theorem (Ghaffari, Harris, Kuhn 2017)



The Distributed Lovász Local Lemma
Consider a set X of independent random variables, and a set B = B1, . . . ,Bn of
(typically bad) events, each depending on a subset of the variables from X .
Consider the graph H with vertex-set B, with an edge between two events if the
set of variables they depend on intersect. The graph H is called the event
dependency graph.
Let d ≥ 2 be the maximum degree of H, and let p be the maximum probability of
an event from B.

If epd2 < 1, then there is a distributed randomized algorithm, running in H
w.h.p. in O(log n) rounds, that finds a value assignment to the variables of X
such that no event from B holds.

Theorem (Chung, Pettie, Su 2014)

If 215pd8 < 1, then there is a distributed randomized algorithm, running in H
w.h.p. in 2O(log d+

√
log log n) rounds, that finds a value assignment to the variables

of X such that no event from B holds.

Theorem (Ghaffari, Harris, Kuhn 2017)



The Distributed Lovász Local Lemma
Consider a set X of independent random variables, and a set B = B1, . . . ,Bn of
(typically bad) events, each depending on a subset of the variables from X .
Consider the graph H with vertex-set B, with an edge between two events if the
set of variables they depend on intersect. The graph H is called the event
dependency graph.
Let d ≥ 2 be the maximum degree of H, and let p be the maximum probability of
an event from B.

If epd2 < 1, then there is a distributed randomized algorithm, running in H
w.h.p. in O(log n) rounds, that finds a value assignment to the variables of X
such that no event from B holds.

Theorem (Chung, Pettie, Su 2014)

If 215pd8 < 1, then there is a distributed randomized algorithm, running in H
w.h.p. in 2O(log d+

√
log log n) rounds, that finds a value assignment to the variables

of X such that no event from B holds.

Theorem (Ghaffari, Harris, Kuhn 2017)



A certificate of non-colorability

For sufficiently large ∆, there is a distributed randomized algorithm run-
ning w.h.p. in min{O(log1/12(∆) log n), 2O(log ∆+

√
log log n)} rounds, that takes a

graph G with maximum degree ∆ in input, and outputs, for any c ≥ ∆−k∆ +1,
either a certificate that G is not c-colorable, or a c-coloring of G .

Theorem (B. and Esperet 2018)

For sufficiently large ∆, and for c ≥ ∆ − k∆ + 1, if G has maximum degree
at most ∆, and χ(G ) > c , then there is some vertex v in G such that the
subgraph induced by {v} ∪ N(v) is not c-colorable.

Theorem (Molloy and Reed 2001–2014)



A certificate of non-colorability

For sufficiently large ∆, there is a distributed randomized algorithm run-
ning w.h.p. in min{O(log1/12(∆) log n), 2O(log ∆+

√
log log n)} rounds, that takes a

graph G with maximum degree ∆ in input, and outputs, for any c ≥ ∆−k∆ +1,
either a certificate that G is not c-colorable, or a c-coloring of G .

Theorem (B. and Esperet 2018)

For sufficiently large ∆, and for c ≥ ∆ − k∆ + 1, if G has maximum degree
at most ∆, and χ(G ) > c , then there is some vertex v in G such that the
subgraph induced by {v} ∪ N(v) is not c-colorable.

Theorem (Molloy and Reed 2001–2014)



Overview of the algorithm

For sufficiently large ∆, there is a distributed randomized algorithm run-
ning w.h.p. in min{O(log1/12(∆) log n), 2O(log ∆+

√
log log n)} rounds, that takes a

graph G with maximum degree ∆ in input, and outputs, for any c ≥ ∆−k∆ +1,
either a certificate that G is not c-colorable, or a c-coloring of G .

Theorem (B. and Esperet 2018)

First compute a dense decomposition.



Overview of the algorithm

For sufficiently large ∆, there is a distributed randomized algorithm run-
ning w.h.p. in min{O(log1/12(∆) log n), 2O(log ∆+

√
log log n)} rounds, that takes a

graph G with maximum degree ∆ in input, and outputs, for any c ≥ ∆−k∆ +1,
either a certificate that G is not c-colorable, or a c-coloring of G .

Theorem (B. and Esperet 2018)

First compute a dense decomposition.



Overview of the algorithm

For sufficiently large ∆, there is a distributed randomized algorithm run-
ning w.h.p. in min{O(log1/12(∆) log n), 2O(log ∆+

√
log log n)} rounds, that takes a

graph G with maximum degree ∆ in input, and outputs, for any c ≥ ∆−k∆ +1,
either a certificate that G is not c-colorable, or a c-coloring of G .

Theorem (B. and Esperet 2018)

First compute a dense decomposition.



Overview of the algorithm

Build a nice c-coloring of each dense part.



Overview of the algorithm

Contract each color class of size greater than 1 and add edges to make it a clique.



Overview of the algorithm

Identify external vertices that have a lot of neighbors in the dense part.

Contract these independent vertices together with an independent internal vertex.



Overview of the algorithm

Identify external vertices that have a lot of neighbors in the dense part.

Contract these independent vertices together with an independent internal vertex.



Overview of the algorithm

Identify external vertices whose neighborhoods union cover a lot of internal
vertices.

Add edges between them.



Overview of the algorithm

Identify external vertices whose neighborhoods union cover a lot of internal
vertices.

Add edges between them.



Overview of the algorithm

Color the sparse part of this modified graph.

Use repeated applications of LLL to color the dense parts. Make sure at each step
that for every color, not many internal vertices have an external neighbor of this
color.

Deduce a valid coloring of the graph from the one on the modified graph.

For sufficiently large ∆, there is a distributed randomized algorithm run-
ning w.h.p. in min{O(log1/12(∆) log n), 2O(log ∆+

√
log log n)} rounds, that takes a

graph G with maximum degree ∆ in input, and outputs, for any c ≥ ∆−k∆ +1,
either a certificate that G is not c-colorable, or a c-coloring of G .

Theorem (B. and Esperet 2018)



Overview of the algorithm

Color the sparse part of this modified graph.

Use repeated applications of LLL to color the dense parts. Make sure at each step
that for every color, not many internal vertices have an external neighbor of this
color.

Deduce a valid coloring of the graph from the one on the modified graph.

For sufficiently large ∆, there is a distributed randomized algorithm run-
ning w.h.p. in min{O(log1/12(∆) log n), 2O(log ∆+

√
log log n)} rounds, that takes a

graph G with maximum degree ∆ in input, and outputs, for any c ≥ ∆−k∆ +1,
either a certificate that G is not c-colorable, or a c-coloring of G .

Theorem (B. and Esperet 2018)



Overview of the algorithm

Color the sparse part of this modified graph.

Use repeated applications of LLL to color the dense parts. Make sure at each step
that for every color, not many internal vertices have an external neighbor of this
color.

Deduce a valid coloring of the graph from the one on the modified graph.

For sufficiently large ∆, there is a distributed randomized algorithm run-
ning w.h.p. in min{O(log1/12(∆) log n), 2O(log ∆+

√
log log n)} rounds, that takes a

graph G with maximum degree ∆ in input, and outputs, for any c ≥ ∆−k∆ +1,
either a certificate that G is not c-colorable, or a c-coloring of G .

Theorem (B. and Esperet 2018)



Overview of the algorithm

Color the sparse part of this modified graph.

Use repeated applications of LLL to color the dense parts. Make sure at each step
that for every color, not many internal vertices have an external neighbor of this
color.

Deduce a valid coloring of the graph from the one on the modified graph.

For sufficiently large ∆, there is a distributed randomized algorithm run-
ning w.h.p. in min{O(log1/12(∆) log n), 2O(log ∆+

√
log log n)} rounds, that takes a

graph G with maximum degree ∆ in input, and outputs, for any c ≥ ∆−k∆ +1,
either a certificate that G is not c-colorable, or a c-coloring of G .

Theorem (B. and Esperet 2018)



Questions

Thank you for your attention.


	Main Talk

