
Local approximation of the Maximum Cut
in regular graphs

E. Bamas and L. Esperet

EPFL, Lausanne
Université Grenoble Alpes, France

WG 2019
Vall de Núria, June 19th, 2019



Local/Distributed algorithms

The distributed models on graphs:

Synchronous rounds, at each round each vertex can send/receive messages
to/from its neighbors in the graph

No failure

Infinite local computational power

LOCAL model:

Unique IDs

Messages of
unlimited size

CONGEST model:

Unique IDs

Messages of
O(log n) bits

PO model:

Port
numbering+edge
orientation

Messages of
O(log n) bits

How well can we approximate the Maximum Cut in any of these models ?



Local/Distributed algorithms

The distributed models on graphs:

Synchronous rounds, at each round each vertex can send/receive messages
to/from its neighbors in the graph

No failure

Infinite local computational power

LOCAL model:

Unique IDs

Messages of
unlimited size

CONGEST model:

Unique IDs

Messages of
O(log n) bits

PO model:

Port
numbering+edge
orientation

Messages of
O(log n) bits

How well can we approximate the Maximum Cut in any of these models ?



The Maximum (directed) Cut in the
distributed model

Problem definition: partition the vertex set into 2 parts, A and B, maximizing the
number of crossing edges (crossing specifically from A to B in the directed case)



The Maximum (directed) Cut in the
distributed model

Problem definition: partition the vertex set into 2 parts, A and B, maximizing the
number of crossing edges (crossing specifically from A to B in the directed case)

1

0

1

0

1

10

0

1

1

1



The Maximum (directed) Cut in the
distributed model

Problem definition: partition the vertex set into 2 parts, A and B, maximizing the
number of crossing edges (crossing specifically from A to B in the directed case)

1

0

1

0

1

10

0

1

1

1

1
2 -approximation in 0 communication rounds !



The Maximum (directed) Cut in the
distributed model

Problem definition: partition the vertex set into 2 parts, A and B, maximizing the
number of crossing edges (crossing specifically from A to B in the directed case)

1

0

1

0

1

10

0

1

1

1



The Maximum (directed) Cut in the
distributed model

Problem definition: partition the vertex set into 2 parts, A and B, maximizing the
number of crossing edges (crossing specifically from A to B in the directed case)

1

0

1

0

1

10

0

1

1

1

1
4 -approximation in 0 communication rounds !



The Maximum (directed) Cut in the
distributed model

Problem definition: partition the vertex set into 2 parts, A and B, maximizing the
number of crossing edges (crossing specifically from A to B in the directed case)

State-of-the-art in the CONGEST model:

Problem approx. rounds rand/det source

MaxCut 1/2 0 rand. folklore
MaxDiCut 1/4 0 rand. folklore
MaxCut

d-regular graphs ≈ 1/2 + 0.28/
√
d O(1) rand. [1]

+ triangle-free
MaxCut 1/2− ε O(log∗ n) det. [2]

MaxDiCut 1/3− ε O(log∗ n) det. [2]
MaxDiCut 1/2− ε O(ε−1) rand. [2]

[1] J. Hirvonen, J. Rybicki, S. Schmid, J. Suomela (Electron. J. of Combin. 2017)

[2] K. Kawarabayashi, G. Schwartzman (DISC 18)



The Maximum (directed) Cut in the
distributed model
There appears to be a gap between randomized and deterministic running times

We know randomized Ω(1)-approximation in O(1) rounds but only O(log∗ n)
deterministic rounds

What is the deterministic complexity of Ω(1)-approximation for MaxCut ?

Our negative results:

Let d > 0 be an integer.
If d is even, any deterministic algorithm in the LOCAL model that
guarantees a constant factor approximation for MaxCut on the class of
bipartite d-regular graphs n-vertex graphs runs in Ω(log∗ n) rounds.

If d is odd, then for any ε > 0, any
(

1
d + ε

)
-approximation requires

Ω(log∗ n) rounds in the same setting.

Theorem

For the oriented cut problem (MaxDiCut), the results are the same except that
1
d is replaced by 2

d in the odd case.



The Maximum (directed) Cut in the
distributed model
There appears to be a gap between randomized and deterministic running times

We know randomized Ω(1)-approximation in O(1) rounds but only O(log∗ n)
deterministic rounds

What is the deterministic complexity of Ω(1)-approximation for MaxCut ?

Our negative results:

Let d > 0 be an integer.
If d is even, any deterministic algorithm in the LOCAL model that
guarantees a constant factor approximation for MaxCut on the class of
bipartite d-regular graphs n-vertex graphs runs in Ω(log∗ n) rounds.

If d is odd, then for any ε > 0, any
(

1
d + ε

)
-approximation requires

Ω(log∗ n) rounds in the same setting.

Theorem

For the oriented cut problem (MaxDiCut), the results are the same except that
1
d is replaced by 2

d in the odd case.



The Maximum (directed) Cut in the
distributed model
There appears to be a gap between randomized and deterministic running times

We know randomized Ω(1)-approximation in O(1) rounds but only O(log∗ n)
deterministic rounds

What is the deterministic complexity of Ω(1)-approximation for MaxCut ?

Our negative results:

Let d > 0 be an integer.
If d is even, any deterministic algorithm in the LOCAL model that
guarantees a constant factor approximation for MaxCut on the class of
bipartite d-regular graphs n-vertex graphs runs in Ω(log∗ n) rounds.

If d is odd, then for any ε > 0, any
(

1
d + ε

)
-approximation requires

Ω(log∗ n) rounds in the same setting.

Theorem

For the oriented cut problem (MaxDiCut), the results are the same except that
1
d is replaced by 2

d in the odd case.



The Maximum (directed) Cut in the
distributed model
There appears to be a gap between randomized and deterministic running times

We know randomized Ω(1)-approximation in O(1) rounds but only O(log∗ n)
deterministic rounds

What is the deterministic complexity of Ω(1)-approximation for MaxCut ?

Our negative results:

Let d > 0 be an integer.
If d is even, any deterministic algorithm in the LOCAL model that
guarantees a constant factor approximation for MaxCut on the class of
bipartite d-regular graphs n-vertex graphs runs in Ω(log∗ n) rounds.

If d is odd, then for any ε > 0, any
(

1
d + ε

)
-approximation requires

Ω(log∗ n) rounds in the same setting.

Theorem

For the oriented cut problem (MaxDiCut), the results are the same except that
1
d is replaced by 2

d in the odd case.



The Maximum (directed) Cut in the
distributed model
There appears to be a gap between randomized and deterministic running times

We know randomized Ω(1)-approximation in O(1) rounds but only O(log∗ n)
deterministic rounds

What is the deterministic complexity of Ω(1)-approximation for MaxCut ?

Our negative results:

Let d > 0 be an integer.
If d is even, any deterministic algorithm in the LOCAL model that
guarantees a constant factor approximation for MaxCut on the class of
bipartite d-regular graphs n-vertex graphs runs in Ω(log∗ n) rounds.

If d is odd, then for any ε > 0, any
(

1
d + ε

)
-approximation requires

Ω(log∗ n) rounds in the same setting.

Theorem

For the oriented cut problem (MaxDiCut), the results are the same except that
1
d is replaced by 2

d in the odd case.



The Maximum (directed) Cut in the
distributed model
There appears to be a gap between randomized and deterministic running times

We know randomized Ω(1)-approximation in O(1) rounds but only O(log∗ n)
deterministic rounds

What is the deterministic complexity of Ω(1)-approximation for MaxCut ?

Our negative results:

Let d > 0 be an integer.
If d is even, any deterministic algorithm in the LOCAL model that
guarantees a constant factor approximation for MaxCut on the class of
bipartite d-regular graphs n-vertex graphs runs in Ω(log∗ n) rounds.

If d is odd, then for any ε > 0, any
(

1
d + ε

)
-approximation requires

Ω(log∗ n) rounds in the same setting.

Theorem

For the oriented cut problem (MaxDiCut), the results are the same except that
1
d is replaced by 2

d in the odd case.



The Maximum (directed) Cut in the
distributed model

Our positive results:

Let d > 0 be an odd integer.
For the MaxCut, there exists a deterministic 1

d -approximation on
d-regular graphs running in 1 round in the CONGEST model.

For the MaxDiCut, there exists a deterministic 2
d+1/d -approximation

on d-regular graphs running in 0 round in the CONGEST model.

For the MaxDiCut, there exists α > 0 such that there is a

deterministic
(

2
d+1/d + α

)
-approximation on d-regular graphs running in

2 rounds in the CONGEST model.

Theorem

These algorithms are very simple and even do not require any communication if
the orientation of edges is given (PO model for instance).



The Maximum (directed) Cut in the
distributed model

Our positive results:

Let d > 0 be an odd integer.
For the MaxCut, there exists a deterministic 1

d -approximation on
d-regular graphs running in 1 round in the CONGEST model.

For the MaxDiCut, there exists a deterministic 2
d+1/d -approximation

on d-regular graphs running in 0 round in the CONGEST model.

For the MaxDiCut, there exists α > 0 such that there is a

deterministic
(

2
d+1/d + α

)
-approximation on d-regular graphs running in

2 rounds in the CONGEST model.

Theorem

These algorithms are very simple and even do not require any communication if
the orientation of edges is given (PO model for instance).



The Maximum (directed) Cut in the
distributed model

Our positive results:

Let d > 0 be an odd integer.
For the MaxCut, there exists a deterministic 1

d -approximation on
d-regular graphs running in 1 round in the CONGEST model.

For the MaxDiCut, there exists a deterministic 2
d+1/d -approximation

on d-regular graphs running in 0 round in the CONGEST model.

For the MaxDiCut, there exists α > 0 such that there is a

deterministic
(

2
d+1/d + α

)
-approximation on d-regular graphs running in

2 rounds in the CONGEST model.

Theorem

These algorithms are very simple and even do not require any communication if
the orientation of edges is given (PO model for instance).



Proof of the lower bound

Consider a hypergraph G = (V ,E ) where edges are sets of r vertices. Fix
m > 0 then for any mapping f : E 7→ {0, 1} there exists a n big enough such
that there is a monochromatic induced subgraph of size m.

Theorem (Ramsey (1930))

A deterministic algorithm is a mapping from every possible neighborhood to {0, 1}

Here a neighborhood is given by the edge set, the set of IDs and the permutation
of IDs on vertices



Proof of the lower bound

Consider a hypergraph G = (V ,E ) where edges are sets of r vertices. Fix
m > 0 then for any mapping f : E 7→ {0, 1} there exists a n big enough such
that there is a monochromatic induced subgraph of size m.

Theorem (Ramsey (1930))

A deterministic algorithm is a mapping from every possible neighborhood to {0, 1}

Here a neighborhood is given by the edge set, the set of IDs and the permutation
of IDs on vertices



Proof of the lower bound

Consider a hypergraph G = (V ,E ) where edges are sets of r vertices. Fix
m > 0 then for any mapping f : E 7→ {0, 1} there exists a n big enough such
that there is a monochromatic induced subgraph of size m.

Theorem (Ramsey (1930))

A deterministic algorithm is a mapping from every possible neighborhood to {0, 1}

Here a neighborhood is given by the edge set, the set of IDs and the permutation
of IDs on vertices



Proof of the lower bound
Find a graph where every vertex has the same local view (same edge set) and the
permutation of IDs is easy to fix

Figure: d even Figure: d odd



Proof of the lower bound
Find a graph where every vertex has the same local view (same edge set) and the
permutation of IDs is easy to fix

Figure: d even Figure: d odd



Proof of the lower bound

Iteratively apply Ramsey’s theorem to partition the cycle into monochromatic
slices



Proof of the lower bound

Iteratively apply Ramsey’s theorem to partition the cycle into monochromatic
slices



Proof of the lower bound

Iteratively apply Ramsey’s theorem to partition the cycle into monochromatic
slices



Proof of the lower bound

Iteratively apply Ramsey’s theorem to partition the cycle into monochromatic
slices



Proof of the lower bound

Iteratively apply Ramsey’s theorem to partition the cycle into monochromatic
slices



Proof of the lower bound

Iteratively apply Ramsey’s theorem to partition the cycle into monochromatic
slices



Proof of the lower bound

Iteratively apply Ramsey’s theorem to partition the cycle into monochromatic
slices

Let d > 0 be an integer.
If d is even, any deterministic algorithm in the LOCAL model that
guarantees a constant factor approximation for MaxCut on the class of
bipartite d-regular graphs n-vertex graphs runs in Ω(log∗ n) rounds.

If d is odd, then for any ε > 0, any
(

1
d + ε

)
-approximation requires

Ω(log∗ n) rounds in the same setting.

Theorem



Proof of the lower bound

If d is an odd integer, then for any ε > 0, any
(

1
d + ε

)
-approximation

requires Ω(log∗ n) rounds in the same setting.

Theorem



Proof of the lower bound

If d is an odd integer, then for any ε > 0, any
(

1
d + ε

)
-approximation

requires Ω(log∗ n) rounds in the same setting.

Theorem



Proof of the positive results

Let d > 0 be an odd integer.
For the MaxCut, there exists a deterministic 1

d -approximation on
d-regular graphs running in 1 round in the CONGEST model.

For the MaxDiCut, there exists a deterministic 2
d+1/d -approximation

on d-regular graphs running in 0 round in the CONGEST model.

For the MaxDiCut, there exists α > 0 such that there is a

deterministic
(

2
d+1/d + α

)
-approximation on d-regular graphs running in

2 rounds in the CONGEST model.

Theorem



Proof of the positive results

Unoriented case with d odd: every vertex v collects the list L(v) of IDs of its
neighbors. Let m(v) be the median value of L(v)

3 12

6

11

10

71

5

9

48
2



Proof of the positive results

Unoriented case with d odd: every vertex v collects the list L(v) of IDs of its
neighbors. Let m(v) be the median value of L(v)

3 12

6

11

10

71

5

9

48
2

v chooses the left side if and only if ID(v) > m(v)



Proof of the positive results

Unoriented case with d odd: every vertex v collects the list L(v) of IDs of its
neighbors. Let m(v) be the median value of L(v)

3 12

6

11

10

71

5

9

48
2

v chooses the left side if and only if ID(v) > m(v) =⇒ 1
d -approximation



Proof of the positive results

Oriented case with d odd: a vertex chooses the right side if and only if it has
more ingoing than outgoing edges



Proof of the positive results

Oriented case with d odd: a vertex chooses the right side if and only if it has
more ingoing than outgoing edges



Proof of the positive results

Oriented case with d odd: a vertex chooses the right side if and only if it has
more ingoing than outgoing edges

=⇒ 2
d+1/d -approximation (the ratio is tight).



Proof of the positive results

How to match the 2
d upper bound ?

In a given cut, a vertex v is said to be unstable if and only if all its neighbors are
on the same side of the cut as v

For 2 rounds, every unstable vertex changes side. =⇒
(

2
d+1/d + α

)
approximation ratio



Proof of the positive results

How to match the 2
d upper bound ?

In a given cut, a vertex v is said to be unstable if and only if all its neighbors are
on the same side of the cut as v

For 2 rounds, every unstable vertex changes side. =⇒
(

2
d+1/d + α

)
approximation ratio



Proof of the positive results

How to match the 2
d upper bound ?

In a given cut, a vertex v is said to be unstable if and only if all its neighbors are
on the same side of the cut as v

For 2 rounds, every unstable vertex changes side. =⇒
(

2
d+1/d + α

)
approximation ratio



Conclusion

Is the upper bound on approximation ratio 2
d matched ?

MaxCut is not a locally checkable problem which makes it possible to get this
gap between randomized and deterministic algorithms

A related problem that is also locally checkable ?

Yes ! Maximal cut

Maximal cut behaves very differently: Ω(log n) deterministic rounds and
Ω(log log n) randomized rounds (A. Balliu, J. Hirvonen, C. Lenzen, D. Olivetti, J.
Suomela (SIROCCO 2019))



Conclusion

Is the upper bound on approximation ratio 2
d matched ?

MaxCut is not a locally checkable problem which makes it possible to get this
gap between randomized and deterministic algorithms

A related problem that is also locally checkable ?

Yes ! Maximal cut

Maximal cut behaves very differently: Ω(log n) deterministic rounds and
Ω(log log n) randomized rounds (A. Balliu, J. Hirvonen, C. Lenzen, D. Olivetti, J.
Suomela (SIROCCO 2019))



Conclusion

Is the upper bound on approximation ratio 2
d matched ?

MaxCut is not a locally checkable problem which makes it possible to get this
gap between randomized and deterministic algorithms

A related problem that is also locally checkable ?

Yes ! Maximal cut

Maximal cut behaves very differently: Ω(log n) deterministic rounds and
Ω(log log n) randomized rounds (A. Balliu, J. Hirvonen, C. Lenzen, D. Olivetti, J.
Suomela (SIROCCO 2019))



Conclusion

Is the upper bound on approximation ratio 2
d matched ?

MaxCut is not a locally checkable problem which makes it possible to get this
gap between randomized and deterministic algorithms

A related problem that is also locally checkable ?

Yes ! Maximal cut

Maximal cut behaves very differently: Ω(log n) deterministic rounds and
Ω(log log n) randomized rounds (A. Balliu, J. Hirvonen, C. Lenzen, D. Olivetti, J.
Suomela (SIROCCO 2019))



Conclusion

Is the upper bound on approximation ratio 2
d matched ?

MaxCut is not a locally checkable problem which makes it possible to get this
gap between randomized and deterministic algorithms

A related problem that is also locally checkable ?

Yes ! Maximal cut

Maximal cut behaves very differently: Ω(log n) deterministic rounds and
Ω(log log n) randomized rounds (A. Balliu, J. Hirvonen, C. Lenzen, D. Olivetti, J.
Suomela (SIROCCO 2019))


	Main Talk

