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Local/Distributed algorithms

The distributed models on graphs:

Synchronous rounds, at each round each vertex can send/receive messages
to/from its neighbors in the graph

No failure

Infinite local computational power

LOCAL model:

Unique IDs

Messages of
unlimited size

CONGEST model:

Unique IDs

Messages of
O(log n) bits

PO model:

Port
numbering+edge
orientation

Messages of
O(log n) bits

How well can we approximate the Maximum Cut in any of these models ?
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The Maximum (directed) Cut in the
distributed model

Problem definition: partition the vertex set into 2 parts, A and B, maximizing the
number of crossing edges (crossing specifically from A to B in the directed case)
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The Maximum (directed) Cut in the
distributed model

Problem definition: partition the vertex set into 2 parts, A and B, maximizing the
number of crossing edges (crossing specifically from A to B in the directed case)

State-of-the-art in the CONGEST model:

Problem approx. rounds rand/det source

MaxCut 1/2 0 rand. folklore
MaxDiCut 1/4 0 rand. folklore
MaxCut

d-regular graphs ≈ 1/2 + 0.28/
√
d O(1) rand. [1]

+ triangle-free
MaxCut 1/2− ε O(log∗ n) det. [2]

MaxDiCut 1/3− ε O(log∗ n) det. [2]
MaxDiCut 1/2− ε O(ε−1) rand. [2]

[1] J. Hirvonen, J. Rybicki, S. Schmid, J. Suomela (Electron. J. of Combin. 2017)

[2] K. Kawarabayashi, G. Schwartzman (DISC 18)



The Maximum (directed) Cut in the
distributed model
There appears to be a gap between randomized and deterministic running times

We know randomized Ω(1)-approximation in O(1) rounds but only O(log∗ n)
deterministic rounds

What is the deterministic complexity of Ω(1)-approximation for MaxCut ?

Our negative results:

Let d > 0 be an integer.
If d is even, any deterministic algorithm in the LOCAL model that
guarantees a constant factor approximation for MaxCut on the class of
bipartite d-regular graphs n-vertex graphs runs in Ω(log∗ n) rounds.

If d is odd, then for any ε > 0, any
(

1
d + ε

)
-approximation requires

Ω(log∗ n) rounds in the same setting.

Theorem

For the oriented cut problem (MaxDiCut), the results are the same except that
1
d is replaced by 2

d in the odd case.
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The Maximum (directed) Cut in the
distributed model

Our positive results:

Let d > 0 be an odd integer.
For the MaxCut, there exists a deterministic 1

d -approximation on
d-regular graphs running in 1 round in the CONGEST model.

For the MaxDiCut, there exists a deterministic 2
d+1/d -approximation

on d-regular graphs running in 0 round in the CONGEST model.

For the MaxDiCut, there exists α > 0 such that there is a

deterministic
(

2
d+1/d + α

)
-approximation on d-regular graphs running in

2 rounds in the CONGEST model.

Theorem

These algorithms are very simple and even do not require any communication if
the orientation of edges is given (PO model for instance).
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Proof of the lower bound

Consider a hypergraph G = (V ,E ) where edges are sets of r vertices. Fix
m > 0 then for any mapping f : E 7→ {0, 1} there exists a n big enough such
that there is a monochromatic induced subgraph of size m.

Theorem (Ramsey (1930))

A deterministic algorithm is a mapping from every possible neighborhood to {0, 1}

Here a neighborhood is given by the edge set, the set of IDs and the permutation
of IDs on vertices
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Proof of the lower bound
Find a graph where every vertex has the same local view (same edge set) and the
permutation of IDs is easy to fix

Figure: d even Figure: d odd
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Proof of the lower bound

Iteratively apply Ramsey’s theorem to partition the cycle into monochromatic
slices
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Proof of the lower bound

If d is an odd integer, then for any ε > 0, any
(

1
d + ε

)
-approximation

requires Ω(log∗ n) rounds in the same setting.

Theorem



Proof of the lower bound

If d is an odd integer, then for any ε > 0, any
(

1
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)
-approximation

requires Ω(log∗ n) rounds in the same setting.

Theorem



Proof of the positive results
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Proof of the positive results

Unoriented case with d odd: every vertex v collects the list L(v) of IDs of its
neighbors. Let m(v) be the median value of L(v)
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Unoriented case with d odd: every vertex v collects the list L(v) of IDs of its
neighbors. Let m(v) be the median value of L(v)
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v chooses the left side if and only if ID(v) > m(v) =⇒ 1
d -approximation



Proof of the positive results

Oriented case with d odd: a vertex chooses the right side if and only if it has
more ingoing than outgoing edges



Proof of the positive results

Oriented case with d odd: a vertex chooses the right side if and only if it has
more ingoing than outgoing edges



Proof of the positive results

Oriented case with d odd: a vertex chooses the right side if and only if it has
more ingoing than outgoing edges

=⇒ 2
d+1/d -approximation (the ratio is tight).



Proof of the positive results

How to match the 2
d upper bound ?

In a given cut, a vertex v is said to be unstable if and only if all its neighbors are
on the same side of the cut as v

For 2 rounds, every unstable vertex changes side. =⇒
(

2
d+1/d + α

)
approximation ratio
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Conclusion

Is the upper bound on approximation ratio 2
d matched ?

MaxCut is not a locally checkable problem which makes it possible to get this
gap between randomized and deterministic algorithms

A related problem that is also locally checkable ?

Yes ! Maximal cut

Maximal cut behaves very differently: Ω(log n) deterministic rounds and
Ω(log log n) randomized rounds (A. Balliu, J. Hirvonen, C. Lenzen, D. Olivetti, J.
Suomela (SIROCCO 2019))
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