
An Improved Analysis of Greedy for Online
Steiner Forest

Étienne Bamas, Marina Drygala, Andreas Maggiori

EPFL, Switzerland

The Online Steiner Tree Problem

The Online Steiner Tree Problem

The Online Steiner Tree Problem

The Online Steiner Forest Problem

The Online Steiner Forest Problem

The Online Steiner Forest Problem

Online = you know the graph G in advance but the requests are
revealed in an online fashion. The decision to buy an edge is
irrevocable.

For Steiner Tree, one can assume the terminals form a single
connected component.

What is the simplest online algorithm one can think of?

The Online Steiner Forest Problem

Online = you know the graph G in advance but the requests are
revealed in an online fashion. The decision to buy an edge is
irrevocable.

For Steiner Tree, one can assume the terminals form a single
connected component.

What is the simplest online algorithm one can think of?

The Greedy algorithm
When a pair {s, t} of terminals arrives, connect it by adding the
cheapest edge set to the current solution.

The Greedy algorithm
When a pair {s, t} of terminals arrives, connect it by adding the
cheapest edge set to the current solution.

The Greedy algorithm
When a pair {s, t} of terminals arrives, connect it by adding the
cheapest edge set to the current solution.

The Greedy algorithm
When a pair {s, t} of terminals arrives, connect it by adding the
cheapest edge set to the current solution.

The Greedy algorithm
When a pair {s, t} of terminals arrives, connect it by adding the
cheapest edge set to the current solution.

The Greedy algorithm
When a pair {s, t} of terminals arrives, connect it by adding the
cheapest edge set to the current solution.

The Greedy algorithm
When a pair {s, t} of terminals arrives, connect it by adding the
cheapest edge set to the current solution.

The Greedy algorithm
When a pair {s, t} of terminals arrives, connect it by adding the
cheapest edge set to the current solution.

What do we know on Greedy?

UB for Greedy LB for any algorithm

Steiner Tree O(log(k)) [IW91] Ω(log(k)) [IW91]

Steiner Forest O(log2(k)) [AAB96] Ω(log(k)) [IW91]

(k refers to the number of terminals/pairs of terminals).
[IM91]: Imase and Waxman, SIAM J. Discrete Math. 1991.
[AAB96]: Awerbuch, Azar, and Bartal, SODA 1996.

Conjecture (Awerbuch, Azar, and Bartal, SODA’96)

Greedy is O(log(k))-competitive for Online Steiner Forest.

What do we know on Greedy?

UB for Greedy LB for any algorithm

Steiner Tree O(log(k)) [IW91] Ω(log(k)) [IW91]

Steiner Forest O(log2(k)) [AAB96] Ω(log(k)) [IW91]

(k refers to the number of terminals/pairs of terminals).
[IM91]: Imase and Waxman, SIAM J. Discrete Math. 1991.
[AAB96]: Awerbuch, Azar, and Bartal, SODA 1996.

Conjecture (Awerbuch, Azar, and Bartal, SODA’96)

Greedy is O(log(k))-competitive for Online Steiner Forest.

Our contributions

s

t

Our contributions

s

t

We have that dG (s, t) = 3.

Our contributions

s

t

But Greedy pays only 2 to connect p = {s, t}!

Our contributions

s

t

Define the contraction by α(p) = dG (s, t)/cp = 3/2.

Our contributions

Intuition: If the instance is hard for greedy, all pairs should have
contraction 1.

Interestingly, all hard instances that were exhibited in the literature
have contraction 1!

Our contributions

Intuition: If the instance is hard for greedy, all pairs should have
contraction 1.

Interestingly, all hard instances that were exhibited in the literature
have contraction 1!

Our contributions – The main theorem

Theorem (Main theorem)

Fix α ≥ 1. If 1% of all pairs have contraction at most α, then
Greedy is O(log(k) ·max{log log(k), log(α)})-competitive.

In an instance where all pairs have contraction 1, then greedy is
O(log(k) log log(k))-competitive.

Our contributions – The main theorem

Theorem (Main theorem)

Fix α ≥ 1. If 1% of all pairs have contraction at most α, then
Greedy is O(log(k) ·max{log log(k), log(α)})-competitive.

In an instance where all pairs have contraction 1, then greedy is
O(log(k) log log(k))-competitive.

Our contributions

Using our main theorem, we show.

Theorem
Greedy is O(log(k) log log(k))-competitive when comparing against
the optimum tree solution.

Theorem (Offline Greedy)

Greedy is an O(log(k) log log(k))-approximation when the pairs
{si , ti}i≤k are revealed in non-increasing value of dG (si , ti).

Previous best upper and lower bounds for offline Greedy were also
O(log2(k)) and Ω(log(k)).

Our contributions

Using our main theorem, we show.

Theorem
Greedy is O(log(k) log log(k))-competitive when comparing against
the optimum tree solution.

Theorem (Offline Greedy)

Greedy is an O(log(k) log log(k))-approximation when the pairs
{si , ti}i≤k are revealed in non-increasing value of dG (si , ti).

Previous best upper and lower bounds for offline Greedy were also
O(log2(k)) and Ω(log(k)).

Our contributions

Using our main theorem, we show.

Theorem
Greedy is O(log(k) log log(k))-competitive when comparing against
the optimum tree solution.

Theorem (Offline Greedy)

Greedy is an O(log(k) log log(k))-approximation when the pairs
{si , ti}i≤k are revealed in non-increasing value of dG (si , ti).

Previous best upper and lower bounds for offline Greedy were also
O(log2(k)) and Ω(log(k)).

Our contributions

Using our main theorem, we show.

Theorem
Greedy is O(log(k) log log(k))-competitive when comparing against
the optimum tree solution.

Theorem (Offline Greedy)

Greedy is an O(log(k) log log(k))-approximation when the pairs
{si , ti}i≤k are revealed in non-increasing value of dG (si , ti).

Previous best upper and lower bounds for offline Greedy were also
O(log2(k)) and Ω(log(k)).

Introduction to the proof techniques

The proof of Alon and Azar (SoCG’92) that Greedy is
O(log(k))-competitive for Steiner Tree:

1 By geometric grouping and rescaling, we can partition T into

T =

log(k)⋃
i=0

T (i)

where each T (i) is a cost class.

2 Show that for each cost class T (i), the cost that Greedy pays
for this cost class is O(OPT).

In total, Greedy pays
(number of cost classes) · (cost of one cost class) which is at
most O(log(k))OPT.

Introduction to the proof techniques

The proof of Alon and Azar (SoCG’92) that Greedy is
O(log(k))-competitive for Steiner Tree:

1 By geometric grouping and rescaling, we can partition T into

T =

log(k)⋃
i=0

T (i)

where each T (i) is a cost class.

2 Show that for each cost class T (i), the cost that Greedy pays
for this cost class is O(OPT).

In total, Greedy pays
(number of cost classes) · (cost of one cost class) which is at
most O(log(k))OPT.

Introduction to the proof techniques

The proof of Alon and Azar (SoCG’92) that Greedy is
O(log(k))-competitive for Steiner Tree:

1 By geometric grouping and rescaling, we can partition T into

T =

log(k)⋃
i=0

T (i)

where each T (i) is a cost class.

2 Show that for each cost class T (i), the cost that Greedy pays
for this cost class is O(OPT).

In total, Greedy pays
(number of cost classes) · (cost of one cost class) which is at
most O(log(k))OPT.

Introduction to the proof techniques

The proof of Alon and Azar (SoCG’92) that Greedy is
O(log(k))-competitive for Steiner Tree:

1 By geometric grouping and rescaling, we can partition T into

T =

log(k)⋃
i=0

T (i)

where each T (i) is a cost class.

2 Show that for each cost class T (i), the cost that Greedy pays
for this cost class is O(OPT).

In total, Greedy pays
(number of cost classes) · (cost of one cost class) which is at
most O(log(k))OPT.

Bounding the total cost of one cost class
Alon and Azar (SoCG’92) in a nutshell: build a dual solution!

Define ci the cost of terminals in T (i).

Bounding the total cost of one cost class
Alon and Azar (SoCG’92) in a nutshell: build a dual solution!

Define ci the cost of terminals in T (i).

Bounding the total cost of one cost class
Alon and Azar (SoCG’92) in a nutshell: build a dual solution!

Define ci the cost of terminals in T (i).

Bounding the total cost of one cost class
Alon and Azar (SoCG’92) in a nutshell: build a dual solution!

Define ci the cost of terminals in T (i).

ri = ci/3

Bounding the total cost of one cost class
Alon and Azar (SoCG’92) in a nutshell: build a dual solution!

Define ci the cost of terminals in T (i).

ri = ci/3

Bounding the total cost of one cost class
Alon and Azar (SoCG’92) in a nutshell: build a dual solution!

Define ci the cost of terminals in T (i).

ri = ci/3

Bounding the total cost of one cost class
Alon and Azar (SoCG’92) in a nutshell: build a dual solution!

Define ci the cost of terminals in T (i).

ri = ci/3

Bounding the total cost of one cost class
Alon and Azar (SoCG’92) in a nutshell: build a dual solution!

Define ci the cost of terminals in T (i).

ri = ci/3

Bounding the total cost of one cost class
Alon and Azar (SoCG’92) in a nutshell: build a dual solution!

Define ci the cost of terminals in T (i).

ri = ci/3

Bounding the total cost of one cost class
Alon and Azar (SoCG’92) in a nutshell: build a dual solution!

Define ci the cost of terminals in T (i).

ri = ci/3

Bounding the total cost of one cost class
Alon and Azar (SoCG’92) in a nutshell: build a dual solution!

Define ci the cost of terminals in T (i).

ri = ci/3

Bounding the total cost of one cost class
Alon and Azar (SoCG’92) in a nutshell: build a dual solution!

Define ci the cost of terminals in T (i).

ri = ci/3

Bounding the total cost of one cost class
Alon and Azar (SoCG’92) in a nutshell: build a dual solution!

Define ci the cost of terminals in T (i).

ri = ci/3

The proof in the case of Steiner Forest

The proof of Awerbuch, Azar, and Bartal (SODA’96) that Greedy
is O(log2(k))-competitive for Steiner Forest:

1 Partition P into

P =

log(k)⋃
i=0

P(i)

where each P(i) is a cost class.

2 Show that for each cost class P(i), the cost that Greedy pays
for this cost class is O(log(ki)) ·OPT, with ki = |P(i)|.

The proof in the case of Steiner Forest

The proof of Awerbuch, Azar, and Bartal (SODA’96) that Greedy
is O(log2(k))-competitive for Steiner Forest:

1 Partition P into

P =

log(k)⋃
i=0

P(i)

where each P(i) is a cost class.

2 Show that for each cost class P(i), the cost that Greedy pays
for this cost class is O(log(ki)) ·OPT, with ki = |P(i)|.

The proof in the case of Steiner Forest

The proof of Awerbuch, Azar, and Bartal (SODA’96) that Greedy
is O(log2(k))-competitive for Steiner Forest:

1 Partition P into

P =

log(k)⋃
i=0

P(i)

where each P(i) is a cost class.

2 Show that for each cost class P(i), the cost that Greedy pays
for this cost class is O(log(ki)) ·OPT, with ki = |P(i)|.

The proof in the case of Steiner Forest

“Show that for each cost class P(i), the cost that Greedy pays for
this cost class is O(log(ki)) ·OPT, with ki = |P(i)|.”

Is this bound tight?

Yes!

In those bad examples, all pairs have contraction exactly 1!

The proof in the case of Steiner Forest

“Show that for each cost class P(i), the cost that Greedy pays for
this cost class is O(log(ki)) ·OPT, with ki = |P(i)|.”

Is this bound tight? Yes!

In those bad examples, all pairs have contraction exactly 1!

The proof in the case of Steiner Forest

“Show that for each cost class P(i), the cost that Greedy pays for
this cost class is O(log(ki)) ·OPT, with ki = |P(i)|.”

Is this bound tight? Yes!

In those bad examples, all pairs have contraction exactly 1!

A better proof when the contraction is 1

c1 = c2 · polylog(k)

A better proof when the contraction is 1

c1 = c2 · polylog(k)

A better proof when the contraction is 1

c1 = c2 · polylog(k)

A better proof when the contraction is 1

k′ · c2 ≥ polylog(k) · c1

A better proof when the contraction is 1

A better proof when the contraction is 1

k′ = O(polylog(k))

A better proof when the contraction is 1

Theorem
If all pairs have contraction 1, then Greedy is
O(log(k) log log(k))-competitive.

Conclusion

• Can we show the O(log(k) log log(k)) upper bound in general?
Our belief: The hardest instances have low contraction.

• If you believe that Greedy is Ω(log1+ϵ(k))-competitive, then
the lower bound should have almost all pairs with contraction
2Ω(logϵ(k))! It would require a totally different thinking!

• How to get rid of the log log(k)?

Conclusion

• Can we show the O(log(k) log log(k)) upper bound in general?
Our belief: The hardest instances have low contraction.

• If you believe that Greedy is Ω(log1+ϵ(k))-competitive, then
the lower bound should have almost all pairs with contraction
2Ω(logϵ(k))! It would require a totally different thinking!

• How to get rid of the log log(k)?

Conclusion

• Can we show the O(log(k) log log(k)) upper bound in general?
Our belief: The hardest instances have low contraction.

• If you believe that Greedy is Ω(log1+ϵ(k))-competitive, then
the lower bound should have almost all pairs with contraction
2Ω(logϵ(k))! It would require a totally different thinking!

• How to get rid of the log log(k)?

