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The Online Steiner Forest Problem

Online = you know the graph G in advance but the requests are
revealed in an online fashion. The decision to buy an edge is
irrevocable.

For Steiner Tree, one can assume the terminals form a single
connected component.

What is the simplest online algorithm one can think of?
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The Greedy algorithm
When a pair {s, t} of terminals arrives, connect it by adding the
cheapest edge set to the current solution.
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What do we know on Greedy?

UB for Greedy LB for any algorithm

Steiner Tree O(log(k)) [IW91] Ω(log(k)) [IW91]

Steiner Forest O(log2(k)) [AAB96] Ω(log(k)) [IW91]

(k refers to the number of terminals/pairs of terminals).
[IM91]: Imase and Waxman, SIAM J. Discrete Math. 1991.
[AAB96]: Awerbuch, Azar, and Bartal, SODA 1996.

Conjecture (Awerbuch, Azar, and Bartal, SODA’96)

Greedy is O(log(k))-competitive for Online Steiner Forest.
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We have that dG (s, t) = 3.
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But Greedy pays only 2 to connect p = {s, t}!
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Define the contraction by α(p) = dG (s, t)/cp = 3/2.
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Intuition: If the instance is hard for greedy, all pairs should have
contraction 1.

Interestingly, all hard instances that were exhibited in the literature
have contraction 1!
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Our contributions – The main theorem

Theorem (Main theorem)

Fix α ≥ 1. If 1% of all pairs have contraction at most α, then
Greedy is O(log(k) ·max{log log(k), log(α)})-competitive.

In an instance where all pairs have contraction 1, then greedy is
O(log(k) log log(k))-competitive.
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Our contributions

Using our main theorem, we show.

Theorem
Greedy is O(log(k) log log(k))-competitive when comparing against
the optimum tree solution.

Theorem (Offline Greedy)

Greedy is an O(log(k) log log(k))-approximation when the pairs
{si , ti}i≤k are revealed in non-increasing value of dG (si , ti ).

Previous best upper and lower bounds for offline Greedy were also
O(log2(k)) and Ω(log(k)).
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Introduction to the proof techniques

The proof of Alon and Azar (SoCG’92) that Greedy is
O(log(k))-competitive for Steiner Tree:

1 By geometric grouping and rescaling, we can partition T into

T =

log(k)⋃
i=0

T (i)

where each T (i) is a cost class.

2 Show that for each cost class T (i), the cost that Greedy pays
for this cost class is O(OPT).

In total, Greedy pays
(number of cost classes) · (cost of one cost class) which is at
most O(log(k))OPT.
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The proof in the case of Steiner Forest

The proof of Awerbuch, Azar, and Bartal (SODA’96) that Greedy
is O(log2(k))-competitive for Steiner Forest:

1 Partition P into

P =

log(k)⋃
i=0

P(i)

where each P(i) is a cost class.

2 Show that for each cost class P(i), the cost that Greedy pays
for this cost class is O(log(ki )) ·OPT, with ki = |P(i)|.
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A better proof when the contraction is 1
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A better proof when the contraction is 1

Theorem
If all pairs have contraction 1, then Greedy is
O(log(k) log log(k))-competitive.



Conclusion

• Can we show the O(log(k) log log(k)) upper bound in general?
Our belief: The hardest instances have low contraction.

• If you believe that Greedy is Ω(log1+ϵ(k))-competitive, then
the lower bound should have almost all pairs with contraction
2Ω(logϵ(k))! It would require a totally different thinking!

• How to get rid of the log log(k)?
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