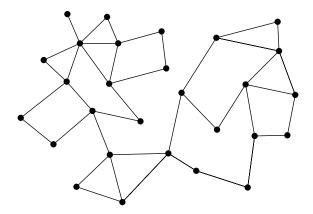
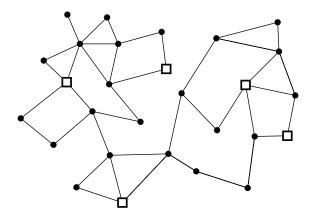
An Improved Analysis of Greedy for Online Steiner Forest

Étienne Bamas, Marina Drygala, Andreas Maggiori

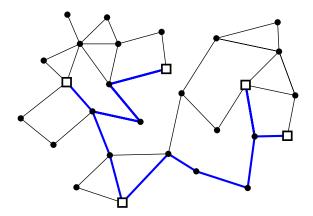
EPFL, Switzerland

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

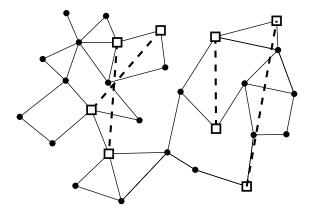


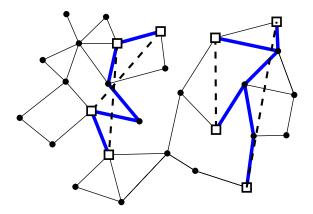


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��





▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Online = you know the graph G in advance but the requests are revealed in an online fashion. The decision to buy an edge is **irrevocable**.

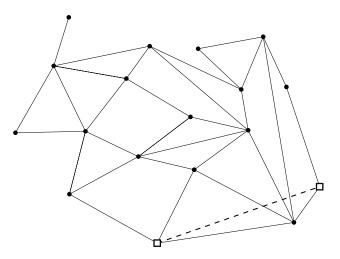
For Steiner **Tree**, one can assume the terminals form a single connected component.

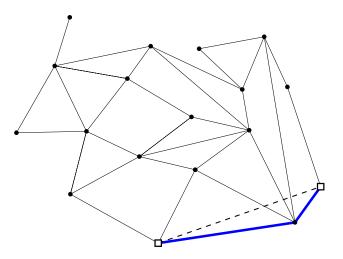
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

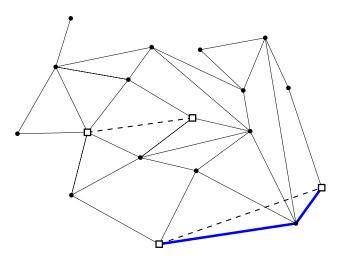
Online = you know the graph G in advance but the requests are revealed in an online fashion. The decision to buy an edge is **irrevocable**.

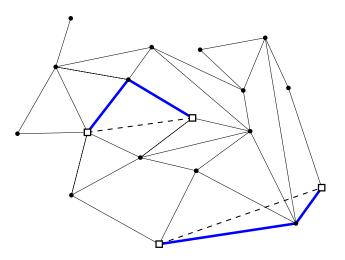
For Steiner **Tree**, one can assume the terminals form a single connected component.

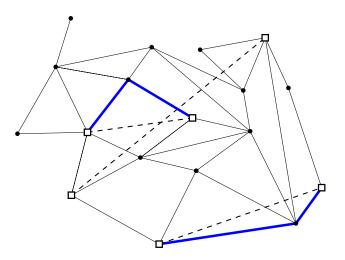
What is the simplest online algorithm one can think of?

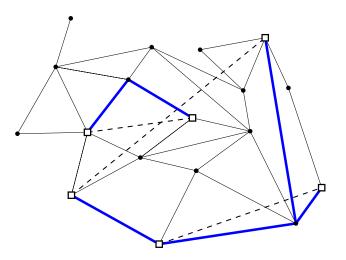


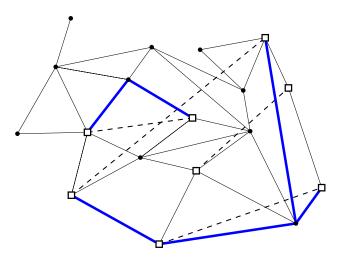


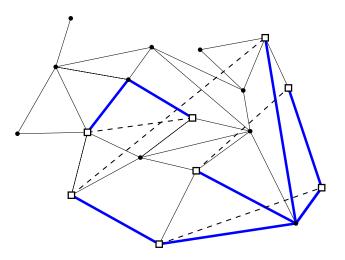












What do we know on Greedy?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

	UB for Greedy	LB for any algorithm
Steiner Tree	$O(\log(k))$ [IW91]	$\Omega(\log(k))$ [IW91]
Steiner Forest	$O(\log^2(k))$ [AAB96]	$\Omega(\log(k))$ [IW91]

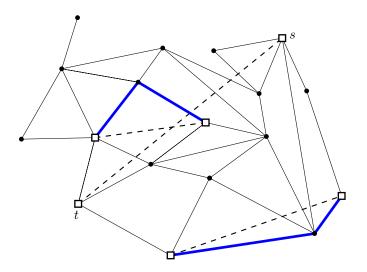
(*k* refers to the number of terminals/pairs of terminals). [IM91]: Imase and Waxman, SIAM J. Discrete Math. 1991. [AAB96]: Awerbuch, Azar, and Bartal, SODA 1996.

What do we know on Greedy?

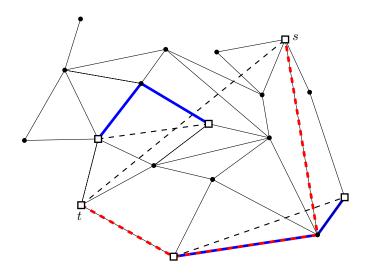
	UB for Greedy	LB for any algorithm
Steiner Tree	$O(\log(k))$ [IW91]	$\Omega(\log(k))$ [IW91]
Steiner Forest	$O(\log^2(k))$ [AAB96]	$\Omega(\log(k))$ [IW91]

(k refers to the number of terminals/pairs of terminals). [IM91]: Imase and Waxman, SIAM J. Discrete Math. 1991. [AAB96]: Awerbuch, Azar, and Bartal, SODA 1996.

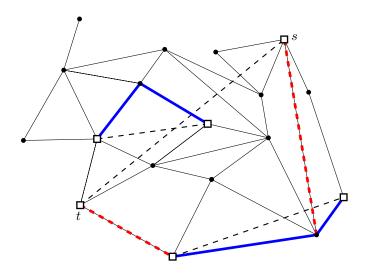
Conjecture (Awerbuch, Azar, and Bartal, SODA'96) Greedy is $O(\log(k))$ -competitive for Online Steiner Forest.



◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @



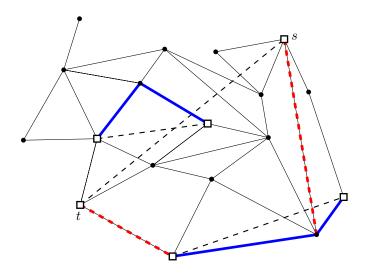
We have that $d_G(s, t) = 3$.



But Greedy pays only 2 to connect $p = \{s, t\}!$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

(ロ)、(型)、(E)、(E)、 E) の(()



Define the **contraction** by $\alpha(p) = d_G(s, t)/c_p = 3/2$.

(ロ)、(型)、(E)、(E)、 E) の(()

Intuition: If the instance is hard for greedy, all pairs should have contraction 1.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Intuition: If the instance is hard for greedy, all pairs should have contraction 1.

Interestingly, all hard instances that were exhibited in the literature have contraction 1!

Our contributions - The main theorem

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem (Main theorem)

Fix $\alpha \ge 1$. If 1% of all pairs have contraction at most α , then Greedy is $O(\log(k) \cdot \max\{\log\log(k), \log(\alpha)\})$ -competitive.

Our contributions - The main theorem

Theorem (Main theorem)

Fix $\alpha \ge 1$. If 1% of all pairs have contraction at most α , then Greedy is $O(\log(k) \cdot \max\{\log\log(k), \log(\alpha)\})$ -competitive.

In an instance where all pairs have contraction 1, then greedy is $O(\log(k) \log \log(k))$ -competitive.

(ロ)、(型)、(E)、(E)、 E) の(()

Using our main theorem, we show.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Using our main theorem, we show.

Theorem

Greedy is $O(\log(k) \log \log(k))$ -competitive when comparing against the optimum **tree** solution.

Using our main theorem, we show.

Theorem

Greedy is $O(\log(k) \log \log(k))$ -competitive when comparing against the optimum **tree** solution.

Theorem (Offline Greedy)

Greedy is an $O(\log(k) \log \log(k))$ -approximation when the pairs $\{s_i, t_i\}_{i \le k}$ are revealed in non-increasing value of $d_G(s_i, t_i)$.

Using our main theorem, we show.

Theorem

Greedy is $O(\log(k) \log \log(k))$ -competitive when comparing against the optimum **tree** solution.

Theorem (Offline Greedy)

Greedy is an $O(\log(k) \log \log(k))$ -approximation when the pairs $\{s_i, t_i\}_{i \le k}$ are revealed in non-increasing value of $d_G(s_i, t_i)$.

Previous best upper and lower bounds for offline Greedy were also $O(\log^2(k))$ and $\Omega(\log(k))$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

The proof of Alon and Azar (SoCG'92) that Greedy is $O(\log(k))$ -competitive for Steiner **Tree**:

The proof of Alon and Azar (SoCG'92) that Greedy is $O(\log(k))$ -competitive for Steiner **Tree**:

1 By geometric grouping and rescaling, we can partition T into

$$T = \bigcup_{i=0}^{\log(k)} T^{(i)}$$

where each $T^{(i)}$ is a **cost class**.

The proof of Alon and Azar (SoCG'92) that Greedy is $O(\log(k))$ -competitive for Steiner **Tree**:

① By geometric grouping and rescaling, we can partition T into

$$T = \bigcup_{i=0}^{\log(k)} T^{(i)}$$

where each $T^{(i)}$ is a **cost class**.

Show that for each cost class T⁽ⁱ⁾, the cost that Greedy pays for this cost class is O(OPT).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The proof of Alon and Azar (SoCG'92) that Greedy is $O(\log(k))$ -competitive for Steiner **Tree**:

① By geometric grouping and rescaling, we can partition T into

$$T = \bigcup_{i=0}^{\log(k)} T^{(i)}$$

where each $T^{(i)}$ is a **cost class**.

2 Show that for each cost class $T^{(i)}$, the cost that Greedy pays for this cost class is O(OPT).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

In total, Greedy pays (number of cost classes) \cdot (cost of one cost class) which is at most $O(\log(k))$ OPT.

Bounding the total cost of one cost class Alon and Azar (SoCG'92) in a nutshell: build a dual solution!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Bounding the total cost of one cost class Alon and Azar (SoCG'92) in a nutshell: build a dual solution!

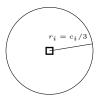
▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Define c_i the cost of terminals in $T^{(i)}$.

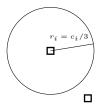
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Define c_i the cost of terminals in $T^{(i)}$.

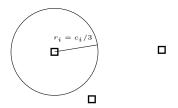
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

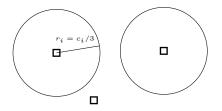


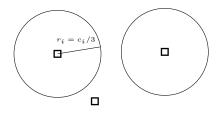
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00



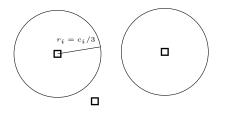
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

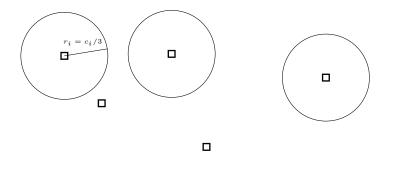


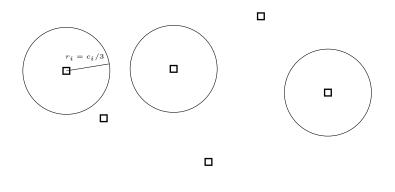


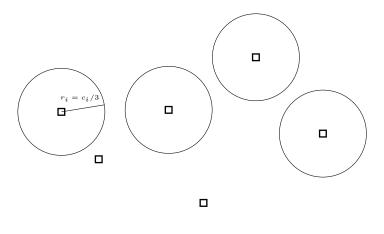


Define c_i the cost of terminals in $T^{(i)}$.

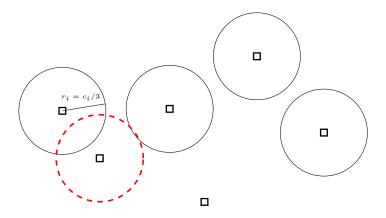








Define c_i the cost of terminals in $T^{(i)}$.



▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The proof of Awerbuch, Azar, and Bartal (SODA'96) that Greedy is $O(\log^2(k))$ -competitive for Steiner **Forest**:

The proof of Awerbuch, Azar, and Bartal (SODA'96) that Greedy is $O(\log^2(k))$ -competitive for Steiner **Forest**:

1 Partition P into

$$P = \bigcup_{i=0}^{\log(k)} P^{(i)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where each $P^{(i)}$ is a **cost class**.

The proof of Awerbuch, Azar, and Bartal (SODA'96) that Greedy is $O(\log^2(k))$ -competitive for Steiner **Forest**:

1 Partition P into

$$P = \bigcup_{i=0}^{\log(k)} P^{(i)}$$

where each $P^{(i)}$ is a **cost class**.

2 Show that for each cost class $P^{(i)}$, the cost that Greedy pays for this cost class is $O(\log(k_i)) \cdot \text{OPT}$, with $k_i = |P^{(i)}|$.

"Show that for each cost class $P^{(i)}$, the cost that Greedy pays for this cost class is $O(\log(k_i)) \cdot \text{OPT}$, with $k_i = |P^{(i)}|$."

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Is this bound tight?

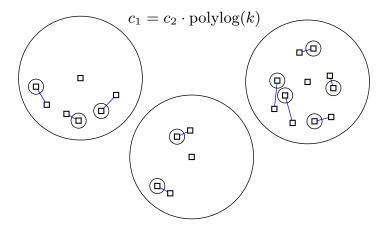
"Show that for each cost class $P^{(i)}$, the cost that Greedy pays for this cost class is $O(\log(k_i)) \cdot \text{OPT}$, with $k_i = |P^{(i)}|$."

Is this bound tight? Yes!

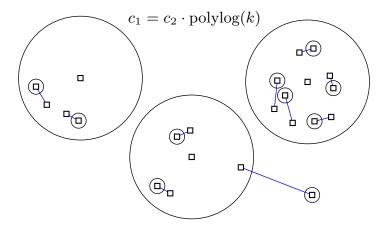
"Show that for each cost class $P^{(i)}$, the cost that Greedy pays for this cost class is $O(\log(k_i)) \cdot \text{OPT}$, with $k_i = |P^{(i)}|$."

Is this bound tight? Yes!

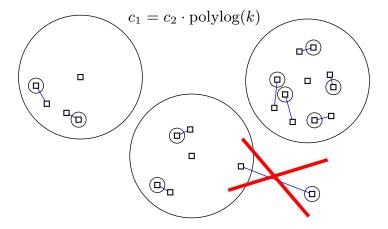
In those bad examples, all pairs have contraction exactly 1!



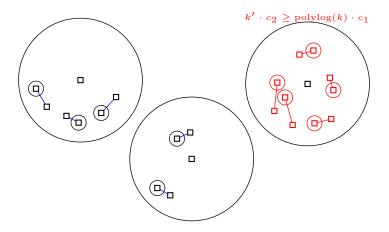
◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

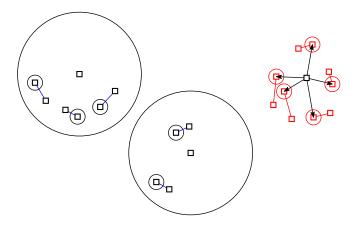


◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

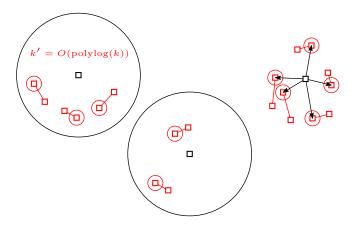


◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●





◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで



◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

A better proof when the contraction is $\boldsymbol{1}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem If all pairs have contraction 1, then Greedy is $O(\log(k) \log \log(k))$ -competitive.

Conclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Can we show the O(log(k) log log(k)) upper bound in general?
 Our belief: The hardest instances have low contraction.

Conclusion

- Can we show the O(log(k) log log(k)) upper bound in general?
 Our belief: The hardest instances have low contraction.
- If you believe that Greedy is Ω(log^{1+ε}(k))-competitive, then the lower bound should have almost all pairs with contraction 2^{Ω(log^ε(k))}! It would require a totally different thinking!

Conclusion

- Can we show the O(log(k) log log(k)) upper bound in general?
 Our belief: The hardest instances have low contraction.
- If you believe that Greedy is Ω(log^{1+ε}(k))-competitive, then the lower bound should have almost all pairs with contraction 2^{Ω(log^ε(k))}! It would require a totally different thinking!
- How to get rid of the log log(k)?

