
The Submodular Santa Claus Problem in the
Restricted Assignment Case

Étienne Bamas, Paritosh Garg, Lars Rohwedder

École polytechnique fédérale de Lausanne

The (Linear) Santa Claus Problem

Set of Resources R

”gifts” Value

5

1

8

2

3

Set of Players P

”kids”

• A set of resources R and a set
of players P. Each resource j
has a value pj .

• Assignment restrictions given
by some bipartite graph.

• Goal: Find an assignment
σ : R 7→ P respecting the
restrictions such that

min
i∈P

∑
j∈σ−1(i)

pj

is maximized, i.e. make the
least happy kid as happy as
possible!

The (Linear) Santa Claus Problem

Set of Resources R

”gifts” Value

5

1

8

2

3

Set of Players P

”kids”

6

8

5

Santa is only as happy as the
least happy kid.

The (Linear) Santa Claus Problem

• A very natural problem.

• ”Dual” problem of the famous makespan minimization
problem. Minmax becomes maxmin.

Machines

Jobs

The (Linear) Santa Claus Problem

• A very natural problem.

• ”Dual” problem of the famous makespan minimization
problem. Minmax becomes maxmin.

Machines

Jobs

The Submodular Santa Claus Problem

An equivalent formulation of the linear Santa Claus:

Given a linear function f : 2R 7→ R+, find an assignment (with
assignment restrictions) σ : R 7→ P such that

min
i∈P

f
(
σ−1(i)

)
is maximized.

What happens if f becomes a submodular function?

Submodular Santa Claus problem (with assignment restrictions).

The Submodular Santa Claus Problem

An equivalent formulation of the linear Santa Claus:

Given a linear function f : 2R 7→ R+, find an assignment (with
assignment restrictions) σ : R 7→ P such that

min
i∈P

f
(
σ−1(i)

)
is maximized.

What happens if f becomes a submodular function?

Submodular Santa Claus problem (with assignment restrictions).

Why submodular functions?

A very natural property in economics: diminishing returns.

For all X ,Y ⊆ R, with X ⊆ Y and every j ∈ R \ Y ,

f (Y ∪ {j})− f (Y) ≤ f (X ∪ {j})− f (X).

You are alone without food in the desert, do you think that your
happiness f satisfies

f (10×) = 10× f ()?

Why submodular functions?

A very natural property in economics: diminishing returns.

For all X ,Y ⊆ R, with X ⊆ Y and every j ∈ R \ Y ,

f (Y ∪ {j})− f (Y) ≤ f (X ∪ {j})− f (X).

You are alone without food in the desert, do you think that your
happiness f satisfies

f (10×) = 10× f ()?

Why submodular functions?

A very natural property in economics: diminishing returns.

For all X ,Y ⊆ R, with X ⊆ Y and every j ∈ R \ Y ,

f (Y ∪ {j})− f (Y) ≤ f (X ∪ {j})− f (X).

You are alone without food in the desert, do you think that your
happiness f satisfies

f (10×) = 10× f ()?

Why submodular functions?

A very natural property in economics: diminishing returns.

For all X ,Y ⊆ R, with X ⊆ Y and every j ∈ R \ Y ,

f (Y ∪ {j})− f (Y) ≤ f (X ∪ {j})− f (X).

You are alone without food in the desert, do you think that your
happiness f satisfies

f (106×) = 106 × f ()?

Some problems become more difficult with submodular functions,
but also more interesting! For instance, maximizing global welfare.

Why submodular functions?

A very natural property in economics: diminishing returns.

For all X ,Y ⊆ R, with X ⊆ Y and every j ∈ R \ Y ,

f (Y ∪ {j})− f (Y) ≤ f (X ∪ {j})− f (X).

You are alone without food in the desert, do you think that your
happiness f satisfies

f (106×) = 106 × f ()?

Some problems become more difficult with submodular functions,
but also more interesting! For instance, maximizing global welfare.

Previous results

In the linear case, very well studied problem.

• Introduced by Bansal and Srividenko (STOC’06) who gives an
O(log log(m)/ log log log(m))-approximation algorithm (with m = |P|).

• Numerous improvements over the years on the approximation guarantee,
the technique and/or the running time. The current best approximation
is a (4 + ε)-approximation in polynomial time (Davies, Rothvoss, and
Zhang SODA’20, Cheng and Mao ICALP’19).

In the submodular case, a more general result by Goemans, Harvey, Iwata, and
Mirrokni (SODA’09) implies a O(n1/2+ε)-approximation in polynomial time
(where n = |R|) in the restricted assignment case.

Our result:

Theorem
There exists a O(log log(n))-approximation algorithm running in polynomial
time for the Submodular Santa Claus in the Restricted Assignment case.

Previous results

In the linear case, very well studied problem.

• Introduced by Bansal and Srividenko (STOC’06) who gives an
O(log log(m)/ log log log(m))-approximation algorithm (with m = |P|).

• Numerous improvements over the years on the approximation guarantee,
the technique and/or the running time. The current best approximation
is a (4 + ε)-approximation in polynomial time (Davies, Rothvoss, and
Zhang SODA’20, Cheng and Mao ICALP’19).

In the submodular case, a more general result by Goemans, Harvey, Iwata, and
Mirrokni (SODA’09) implies a O(n1/2+ε)-approximation in polynomial time
(where n = |R|) in the restricted assignment case.

Our result:

Theorem
There exists a O(log log(n))-approximation algorithm running in polynomial
time for the Submodular Santa Claus in the Restricted Assignment case.

Previous results

In the linear case, very well studied problem.

• Introduced by Bansal and Srividenko (STOC’06) who gives an
O(log log(m)/ log log log(m))-approximation algorithm (with m = |P|).

• Numerous improvements over the years on the approximation guarantee,
the technique and/or the running time. The current best approximation
is a (4 + ε)-approximation in polynomial time (Davies, Rothvoss, and
Zhang SODA’20, Cheng and Mao ICALP’19).

In the submodular case, a more general result by Goemans, Harvey, Iwata, and
Mirrokni (SODA’09) implies a O(n1/2+ε)-approximation in polynomial time
(where n = |R|) in the restricted assignment case.

Our result:

Theorem
There exists a O(log log(n))-approximation algorithm running in polynomial
time for the Submodular Santa Claus in the Restricted Assignment case.

The Configuration LP

The Configuration LP introduced by Bansal and Srividenko in 2006.

Guess the optimum is T . Then a configuration C ∈ C(i ,T) is a subset of
resources that player i values to at least T .

∑
C∈C(i,T)

xi,C ≥ 1 for all i ∈ P each player gets enough value

∑
i∈P

∑
C∈C(i,T):j∈C

xi,C ≤ 1 for all j ∈ R no resource is taken more than once

xi,C ≥ 0 for all i ∈ P,C ∈ C(i ,T)

Previous Techniques

Theorem (Bansal and Srividenko)

The configuration LP can be solved within a factor (1 + ε) in
polynomial time.

Two rounding techniques against the Configuration LP in the
linear case:

• Bansal and Srividenko (STOC’06) used Lovász Local Lemma.

• Asadpour, Feige, and Saberi (APPROX’08) introduced a
Local Search Technique.

Both of them are based on finding a matching in some hypergraph.

The approach of Bansal and Srividenko

1 Compute x∗ a feasible solution to the configuration LP with
objective T ∗.

2 Preprocess the solution x∗ to reduce to some problem in
which we have log(n) candidate configurations per player,
with unit size resources.

3 Find a good choice of configurations using Lovász Local
Lemma.

The approach of Bansal and Srividenko

1 Compute x∗ a feasible solution to the configuration LP with
objective T ∗.

2 Preprocess the solution x∗ to reduce to some problem in
which we have log(n) candidate configurations per player,
with unit size resources.

3 Find a good choice of configurations using Lovász Local
Lemma.

The approach of Bansal and Srividenko

1 Compute x∗ a feasible solution to the configuration LP with
objective T ∗.

2 Preprocess the solution x∗ to reduce to some problem in
which we have log(n) candidate configurations per player,
with unit size resources.

3 Find a good choice of configurations using Lovász Local
Lemma.

The approach of Bansal and Srividenko

A hypergraph H = (P ∪ R, C) is bipartite if for all hyperedges C ∈ C we
have |C ∩ P| = 1.

P

R

A bipartite hypergraph matching problem

Given a regular and uniform bipartite hypergraph, find for each vertex
i ∈ P one hyperedge Ci such that:

1 i ∈ Ci , and player i is assigned a good fraction of resources in Ci .

2 No resource is taken more than log log(n) times.

P

R

= log(n)

≤ log(n)

size = k

Given a regular and uniform bipartite hypergraph, find for each vertex
i ∈ P one hyperedge Ci such that:

1 i ∈ Ci , and player i is assigned a good fraction of resources in Ci .

2 No resource is taken more than log log(n) times.

Solution:

1 Keep each resource in R with probability log(n)/k.

2 Sample one hyperedge for each player using LLL.

P

R

= log(n)

≤ log(n)

size = k

Given a regular and uniform bipartite hypergraph, find for each vertex
i ∈ P one hyperedge Ci such that:

1 i ∈ Ci , and player i is assigned a good fraction of resources in Ci .

2 No resource is taken more than log log(n) times.

Solution:

1 Keep each resource in R with probability log(n)/k.

2 Sample one hyperedge for each player using LLL.

P

R

= log(n)

≤ log(n)

size = k

Given a regular and uniform bipartite hypergraph, find for each vertex
i ∈ P one hyperedge Ci such that:

1 i ∈ Ci , and player i is assigned a good fraction of resources in Ci .

2 No resource is taken more than log log(n) times.

Solution:

1 Keep each resource in R with probability log(n)/k.

2 Sample one hyperedge for each player using LLL.

P

R’

= log(n)

≤ log(n)

size = log(n)!

Why does it work?

P

R’

= log(n)

≤ log(n)

size = log(n)!

Sampling: Each player i selects one of his log(n) configurations
uniformly at random.

Bad event: Bj = {resource j is taken more than log log(n) times}.
1 P(Bj) ≤ 1/polylog(n) (the expectation is at most 1).

2 Bj depends on polylog(n) other Bj′ . Apply Lovász Local Lemma
with 1 and 2.

3 There is a good solution after sampling down if and only if there is
a good solution before sampling down. I.e. R ′ is representative
enough of R.

Why does it work?

P

R’

= log(n)

≤ log(n)

size = log(n)!

Sampling: Each player i selects one of his log(n) configurations
uniformly at random.

Bad event: Bj = {resource j is taken more than log log(n) times}.
1 P(Bj) ≤ 1/polylog(n) (the expectation is at most 1).

2 Bj depends on polylog(n) other Bj′ . Apply Lovász Local Lemma
with 1 and 2.

3 There is a good solution after sampling down if and only if there is
a good solution before sampling down. I.e. R ′ is representative
enough of R.

Why does it work?

P

R’

= log(n)

≤ log(n)

size = log(n)!

Sampling: Each player i selects one of his log(n) configurations
uniformly at random.

Bad event: Bj = {resource j is taken more than log log(n) times}.

1 P(Bj) ≤ 1/polylog(n) (the expectation is at most 1).

2 Bj depends on polylog(n) other Bj′ . Apply Lovász Local Lemma
with 1 and 2.

3 There is a good solution after sampling down if and only if there is
a good solution before sampling down. I.e. R ′ is representative
enough of R.

Why does it work?

P

R’

= log(n)

≤ log(n)

size = log(n)!

Sampling: Each player i selects one of his log(n) configurations
uniformly at random.

Bad event: Bj = {resource j is taken more than log log(n) times}.
1 P(Bj) ≤ 1/polylog(n) (the expectation is at most 1).

2 Bj depends on polylog(n) other Bj′ . Apply Lovász Local Lemma
with 1 and 2.

3 There is a good solution after sampling down if and only if there is
a good solution before sampling down. I.e. R ′ is representative
enough of R.

Why does it work?

P

R’

= log(n)

≤ log(n)

size = log(n)!

Sampling: Each player i selects one of his log(n) configurations
uniformly at random.

Bad event: Bj = {resource j is taken more than log log(n) times}.
1 P(Bj) ≤ 1/polylog(n) (the expectation is at most 1).

2 Bj depends on polylog(n) other Bj′ . Apply Lovász Local Lemma
with 1 and 2.

3 There is a good solution after sampling down if and only if there is
a good solution before sampling down. I.e. R ′ is representative
enough of R.

Why does it work?

P

R’

= log(n)

≤ log(n)

size = log(n)!

Sampling: Each player i selects one of his log(n) configurations
uniformly at random.

Bad event: Bj = {resource j is taken more than log log(n) times}.
1 P(Bj) ≤ 1/polylog(n) (the expectation is at most 1).

2 Bj depends on polylog(n) other Bj′ . Apply Lovász Local Lemma
with 1 and 2.

3 There is a good solution after sampling down if and only if there is
a good solution before sampling down. I.e. R ′ is representative
enough of R.

The submodular case

Theorem
The Configuration LP can be solved in polynomial time within constant
factor in the case where f is submodular.

By submodularity, we can preprocess the solution x∗ in a similar way as
Bansal and Srividenko to arrive at some hypergraph problem.

The submodular case

Theorem
The Configuration LP can be solved in polynomial time within constant
factor in the case where f is submodular.

By submodularity, we can preprocess the solution x∗ in a similar way as
Bansal and Srividenko to arrive at some hypergraph problem.

A new bipartite hypergraph matching
problem

Given a regular and non-uniform bipartite hypergraph, find for each
vertex i ∈ P one hyperedge Ci such that:

1 i ∈ Ci , and player i is assigned a good fraction of resources in Ci .

2 No resource is taken more than log log(n) times in ∪i∈PCi .

P

R

= log(n)

≤ log(n)

Different sizes!

A new bipartite hypergraph matching
problem

Non-uniformity introduces significant problems in the approach of Bansal
and Srividenko. How do we sample down?

• Sampling down too aggressively might create false positive. R ′ is
not representative of R anymore.

• Not being aggressive enough fails to reduce dependencies enough,
hence LLL does not work!

General intuition of our solution:

• Select hyperedges so that every hyperedge C intersects other
hyperedges C ′, |C ′| ≤ |C | not too many times.

• Then iterate from bigger to smaller hyperedges. When small
hyperedges arrive, allow them to steal resources from big
hyperedges that appeared earlier.

A new bipartite hypergraph matching
problem

Non-uniformity introduces significant problems in the approach of Bansal
and Srividenko. How do we sample down?

• Sampling down too aggressively might create false positive. R ′ is
not representative of R anymore.

• Not being aggressive enough fails to reduce dependencies enough,
hence LLL does not work!

General intuition of our solution:

• Select hyperedges so that every hyperedge C intersects other
hyperedges C ′, |C ′| ≤ |C | not too many times.

• Then iterate from bigger to smaller hyperedges. When small
hyperedges arrive, allow them to steal resources from big
hyperedges that appeared earlier.

Our solution

• Partition the hyperedges according to their size,
C = C(1) ∪ C(2) ∪ . . . ∪ C(log(n)) where C (k) contains all the
hyperedges such that |C | ∈ [logk−1(n), logk(n)).

• Build a hierarchy of resources sets R0(= R),R1,R2, . . . ,Rlog(n)

where each item from Ri survives into Ri+1 with probability
1/ log(n).

• Use LLL to sample one hyperedge for each player such that, for all
C ∈ C(k), ∑

C ′∈C(h),C ′ sampled

|C ∩ C ′ ∩ Rh|

is not too big for all h ≤ k.

Our solution

• Partition the hyperedges according to their size,
C = C(1) ∪ C(2) ∪ . . . ∪ C(log(n)) where C (k) contains all the
hyperedges such that |C | ∈ [logk−1(n), logk(n)).

• Build a hierarchy of resources sets R0(= R),R1,R2, . . . ,Rlog(n)

where each item from Ri survives into Ri+1 with probability
1/ log(n).

• Use LLL to sample one hyperedge for each player such that, for all
C ∈ C(k), ∑

C ′∈C(h),C ′ sampled

|C ∩ C ′ ∩ Rh|

is not too big for all h ≤ k.

Our solution

• Partition the hyperedges according to their size,
C = C(1) ∪ C(2) ∪ . . . ∪ C(log(n)) where C (k) contains all the
hyperedges such that |C | ∈ [logk−1(n), logk(n)).

• Build a hierarchy of resources sets R0(= R),R1,R2, . . . ,Rlog(n)

where each item from Ri survives into Ri+1 with probability
1/ log(n).

• Use LLL to sample one hyperedge for each player such that, for all
C ∈ C(k), ∑

C ′∈C(h),C ′ sampled

|C ∩ C ′ ∩ Rh|

is not too big for all h ≤ k .

Our solution

Why does it work?

• With high probability, |C ′ ∩ Rh| ≤ log(n) for all C ′ ∈ C(h). It
recovers the low dependencies property of Bansal and
Srividenko and is enough to apply LLL.

• The intersection with other configurations is still big enough
so that it is representative.

Our solution

Why does it work?

• With high probability, |C ′ ∩ Rh| ≤ log(n) for all C ′ ∈ C(h). It
recovers the low dependencies property of Bansal and
Srividenko and is enough to apply LLL.

• The intersection with other configurations is still big enough
so that it is representative.

Conclusion

• Submodularity is captured by the non-uniformity of our
hypergraph.

• We obtain an O(log log(n))-approximate solution in polynomial
time.

• Getting O(1)-approximation is an interesting open problem.

• What about the local search technique?

• What about more general valuation functions?

Thank you for your attention!

